极限 (n→∞) lim[1+1/(3n)]^(4n-2)原式= (n→∞) lim{[1+1/(3n)]^(4n)}/ [1+1/(3n)]^2= (n→∞) lim[1+1/(3n)]^(2n)=2/3 请问是错在哪里了?

问题描述:

极限 (n→∞) lim[1+1/(3n)]^(4n-2)
原式= (n→∞) lim{[1+1/(3n)]^(4n)}/ [1+1/(3n)]^2= (n→∞) lim[1+1/(3n)]^(2n)=2/3 请问是错在哪里了?

2n怎么来的?指数是相减,不是相除
原式= lim(n→∞) lim{[1+1/(3n)]^[(3n)*(4n-2)/3n]
= lim(n→∞) lim{[1+1/(3n)]^(3n)}^[(4n-2)/3n]
=e^(4/3)