在三角行ABC中,角A.B.C所对的边分别为a.b.c,设S为三角形ABC的面积,满足S等于4分之根号3括号a的平方加b...

问题描述:

在三角行ABC中,角A.B.C所对的边分别为a.b.c,设S为三角形ABC的面积,满足S等于4分之根号3括号a的平方加b...
在三角行ABC中,角A.B.C所对的边分别为a.b.c,设S为三角形ABC的面积,满足S等于4分之根号3括号a的平方加b的平方减c的平方括号.求角C的大小;求sinA+sinB的最大值

a^2+b^2-c^2=2abcosC,代入,S=根号3/4*2abcosC1/2absinC=根号3/4*2abcosC,tanC=根号3,所以C=60度sinA+sinB=sinA+sin(120-A)=sinA+cosAsin120-sinAcos120=3/2sinA+根号3/2cosA=根号3sin(A+30)