设数列an的前n项和为sn,对于所有的自然数n都有sn=n(a1+an)/2,求证an是等差数列

问题描述:

设数列an的前n项和为sn,对于所有的自然数n都有sn=n(a1+an)/2,求证an是等差数列
步骤简要但要准确,我发现有的答案根本就不正确

证:第一种方法Sn+1=(n+1)[a1+a(n+1)]/2Sn=n(a1+an)/2Sn-1=(n-1)[a1+a(n-1)]/2a(n+1)=Sn+1-Sn=(n+1)[a1+a(n+1)]/2-n(a1+an)/2整理,得a1=(1-n)a(n+1)+nan (1)an=Sn-Sn-1=n(a1+an)/2-(n-1)[a1+a(n-1)]/2整理,得a1=(2-n...