矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.(1)求证:△AEF∽△DCE;(2)求tan∠ECF的值.
问题描述:
矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.
(1)求证:△AEF∽△DCE;
(2)求tan∠ECF的值.
答
(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠AEF+∠AFE=90°,∵EF⊥EC,∴∠AEF+∠DEC=90°,∴∠AFE=∠DEC,∴△AEF∽△DCE;(2) ∵△AEF∽△DCE,∴EFCE=AEDC,∵矩形ABCD中,AB=2AD,E为AD的中点,∴...
答案解析:(1)由四边形ABCD是矩形,EF⊥EC,易得∠A=∠D=90°,∠AFE=∠DEC,由有两组角对应相等的两个三角形相似,即可判定△AEF∽△DCE;
(2)由△AEF∽△DCE,根据相似三角形的对应边成比例,可得
=EF CE
,又由矩形ABCD中,AB=2AD,E为AD的中点,tan∠ECF=AE DC
,即可求得答案.EF CE
考试点:相似三角形的判定与性质;勾股定理;矩形的性质;锐角三角函数的定义.
知识点:此题考查了相似三角形的判定与性质、矩形的性质以及锐角三角函数的定义.此题难度适中,注意数形结合思想的应用.