高中数学三角函数化简题已知 fα=sin(π-α)cos(2π-α)cos(-α+3/2π)/cos(π/2-α)sin(-π-α)
问题描述:
高中数学三角函数化简题已知 fα=sin(π-α)cos(2π-α)cos(-α+3/2π)/cos(π/2-α)sin(-π-α)
已知fα=sin(π-α)cos(2π-α)cos(-α+3/2π)/cos(π/2-α)sin(-π-α)
化简
若α第三象限,且cos(α-3/2π)=1/5,求fα
若α=-31/3π,求fα
答
∵fα=sin(π-α)cos(2π-α)cos(-α+3/2π)/cos(π/2-α)sin(-π-α)∴f(a) = -sinacosasina/(sinasina)=-cosa∵cos(a-3/2π) = -sina = 1/5 又α第三象限∴cosa = - 2*(根号6)/5∴f(a) = -cosa = 2*(根号6)/5(2)...