已知三角形ABC的两边AB,AC的长是关于x的一元二次方程x^2-(2k+3)x+k^2+3k+2=0的两个实数根,第三边BC长为5.问k取何值时,三角形ABC是等腰三角形,并求三角形的周长?
问题描述:
已知三角形ABC的两边AB,AC的长是关于x的一元二次方程x^2-(2k+3)x+k^2+3k+2=0的两个实数根,第三边BC长为5.问k取何值时,三角形ABC是等腰三角形,并求三角形的周长?
答
x^2-(2k+3)x+k^2+3k+2=0
(x-k-2)(x-k-1)=0
x1=k+2 x2=k+1
不妨设AB=x1=k+2 AC=x2=k+1
显然AB≠AC
1.若AC=BC 则k+1=5 k=4
周长=AC+BC+AB=5+k+2+k+1=2k+8=2*4+8=16
2.若AB=BC,则k+2=5 k=3
周长=2k+8=2*3+8=14