阅读材料,寻找共同存在的规律:有一个运算程序a⊕b=n,可以使:(a+c)⊕b=n+c,a⊕(b+c)=n-2c,如果1⊕1=2,那么2010⊕2010= ___ .

问题描述:

阅读材料,寻找共同存在的规律:有一个运算程序a⊕b=n,可以使:(a+c)⊕b=n+c,a⊕(b+c)=n-2c,如果1⊕1=2,那么2010⊕2010= ___ .


答案解析:按照题目给出的运算程序,先计算出(1+2009)⊕1,即2010⊕1=2011的值.再计算2010⊕(1+2009)即2010⊕2010的值即可解答.
考试点:有理数的混合运算.


知识点:此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.