先化简再求值(2X/X2-4 - 1/X+2)÷(X-1/X-2) X=√3-1

问题描述:

先化简再求值(2X/X2-4 - 1/X+2)÷(X-1/X-2) X=√3-1

原式=[2x/(x²-4)-1/(x+2)]÷[(x-1)/(x-2)]={2x/[(x+2)(x-2)]-(x-2)/[(x+2)(x-2)]}×[(x-2)/(x-1)]=(2x-x+2)/[(x+2)(x-2)]×[(x-2)/(x-1)]=(x+2)/[(x+2)(x-2)]×[(x-2)/(x-1)]=1/(x-1)=1/(√3-1-1)=1/(√3-2)=(...