对于每项均是正整数的数列A:a1,a2,…,an,定义变换T1,T1将数列A变换成数列T1(A):n,a1-1,a2-1,…,an-1.对于每项均是非负整数的数列B:b1,b2,…,bm,定义变换T2,T2将数列B各项从大到小排列,然后去掉所有为零的项,得到数列T2(B).又定义S(B)=2(b1+2b2+…+mbm)+b12+b22+…+bm2.设A0是每项均为正整数的有穷数列,令Ak+1=T2(T1(Ak))(k=0,1,2,…).(Ⅰ)如果数列A0为2,6,4,8,写出数列A1,A2;(Ⅱ)对于每项均是正整数的有穷数列A,证明S(T1(A))=S(A);(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列A0,存在正整数K,当k≥K时,S(Ak+1)=S(Ak).

问题描述:

对于每项均是正整数的数列A:a1,a2,…,an,定义变换T1,T1将数列A变换成数列T1(A):n,a1-1,a2-1,…,an-1.
对于每项均是非负整数的数列B:b1,b2,…,bm,定义变换T2,T2将数列B各项从大到小排列,然后去掉所有为零的项,得到数列T2(B).
又定义S(B)=2(b1+2b2+…+mbm)+b12+b22+…+bm2
设A0是每项均为正整数的有穷数列,令Ak+1=T2(T1(Ak))(k=0,1,2,…).
(Ⅰ)如果数列A0为2,6,4,8,写出数列A1,A2
(Ⅱ)对于每项均是正整数的有穷数列A,证明S(T1(A))=S(A);
(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列A0,存在正整数K,当k≥K时,S(Ak+1)=S(Ak).

(Ⅰ)A0:2,6,4,8,T1(A0):4,1,5,7,3,A1:7,5,4,3,1;T1(A1):7,5,4,3,1,T1(A1):5,6,3,4,2,0,∴A2:6,5,4,3,2.(Ⅱ)证明:设每项均是正整数的有穷数列A为a1,a2,…,an,则T...
答案解析:(Ⅰ)由A0:2,6,4,8,求得T1(A0)再通过Ak+1=T2(T1(Ak))求解.
(Ⅱ)设有穷数列A求得T1(A)再求得S(T1(A)),由S(A)=2(a1+2a2++nan)+a12+a22++an2,两者作差比较.
(Ⅲ)设A是每项均为非负整数的数列a1,a2,an.在存在1≤i<j≤n,有ai≤aj时条件下,交换数列A的第i项与第j项得到数列B,在存在1≤m<n,使得am+1=am+2═an=0时条件下,若记数列a1,a2,…,am为C,Ak+1=T2(T1(Ak))s(Ak+1)≤S(T1(Ak)).由S(T1(Ak))=S(Ak),得到S(Ak+1)≤S(Ak).S(Ak)是大于2的整数,所以经过有限步后,必有S(Ak)=S(Ak+1)=S(Ak+2)=0.
考试点:分析法和综合法.
知识点:本题是一道由一个数列为基础,按着某种规律新生出另一个数列的题目,要注意新数列的前几项一定不能出错,一出旦错,则整体出错.