数列{an}满足a1=32,an+1=an2-an+1(n∈N*),则m=1a1+1a2+…+1a2010的整数部分是( ) A.0 B.1 C.2 D.3
问题描述:
数列{an}满足a1=
,an+1=an2-an+1(n∈N*),则m=3 2
+1 a1
+…+1 a2
的整数部分是( )1 a2010
A. 0
B. 1
C. 2
D. 3
答
由题设知,an+1-1=an(an-1),∴1an+1−1=1an−1-1an,∴1an−1-1an+1−1=1an,通过累加,得m=1a1+1a2+…+1a2010=1a1−1-1a2011−1=2-1a2011−1.由an+1-an=(an-1)2≥0,即an+1≥an,由a1=32,得a2=74,∴a3=216...