函数f(x)=-1/x的单调区间,说明是增区间还是减区间,用定义法证明

问题描述:

函数f(x)=-1/x的单调区间,说明是增区间还是减区间,用定义法证明

函数定义域为x≠0!
①当x<0时:
令x1<x2<0,则:f(x1)-f(x2)=1/x2-1/x1=(x1-x2)/(x1x2)<0,
→此时f(x)单调递增!即(-∞,0)为一个递增区间;
②当x>0时,
令0<x1<x2,则:f(x1)-f(x2)=1/x2-1/x1=(x1-x2)/(x1x2)<0,
→此时f(x)单调递增!即(0,+∞)也为一个递增区间!