椭圆x24+y22=1中过P(1,1)的弦恰好被P点平分,则此弦所在直线的方程是_.

问题描述:

椭圆

x2
4
+
y2
2
=1中过P(1,1)的弦恰好被P点平分,则此弦所在直线的方程是______.

直线与椭圆的两个交点坐标为(x1,y1);(x2,y2)则

x12
4
+
y12
2
=1
x22
4
+
y22
2
=1
两式相减得
(x1+x2)(x1x2)
4
+
(y1+y2)(y1y2)
2
=0

∵P(1,1)为中点
2(x1x2)
4
+
2(y1y2)
2
=0

∴直线的斜率为k=
y2y1
x2x1
=−
1
2

∴此弦所在直线的方程是y−1=−
1
2
(x−1)

即x+2y-3=0
故答案为x+2y-3=0