椭圆x24+y22=1中过P(1,1)的弦恰好被P点平分,则此弦所在直线的方程是_.
问题描述:
椭圆
+x2 4
=1中过P(1,1)的弦恰好被P点平分,则此弦所在直线的方程是______. y2 2
答
直线与椭圆的两个交点坐标为(x1,y1);(x2,y2)则
两式相减得
+x12 4
=1y12 2
+x22 4
=1y22 2
+(x1+x2)(x1−x2) 4
=0(y1+y2)(y1−y2) 2
∵P(1,1)为中点
∴
+2(x1−x2) 4
=02(y1−y2) 2
∴直线的斜率为k=
=−
y2−y1
x2−x1
1 2
∴此弦所在直线的方程是y−1=−
(x−1)1 2
即x+2y-3=0
故答案为x+2y-3=0