证明:直角三角形中,30°的角所对的边等于斜边的一半.

问题描述:

证明:直角三角形中,30°的角所对的边等于斜边的一半.

证明:如图,延长BC到D,使CD=BC,
在△ABC和△ADC中,

AC=AC
∠ACB=∠ACD=90°
BC=CD

∴△ABC≌△ADC(SAS),
∴AB=AD,
∵∠BAC=30°,
∴∠B=90°-30°=60°,
∴△ABD是等边三角形,
∴AB=BD,
∴BC=
1
2
AB.
答案解析:作出图形,延长BC到D,使CD=BC,然后利用“边角边”证明△ABC和△ADC全等,根据全等三角形对应边相等可得AB=AD,再根据直角三角形两锐角互余求出∠B=60°,从而判断出△ABD是等边三角形,根据等边三角形三边相等可得AB=BD,然后求出BC=
1
2
AB.
考试点:含30度角的直角三角形.

知识点:本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质的证明,根据性质的来源作辅助线构造成等边三角形和全等三角形是解题的关键,作出图形更形象直观.