如图正方形ABCD外有一点P,P在BC外侧,并且夹在平行线AB,CD之间,已知PA=根号17,PB=根号2,PC=根号5,求P

问题描述:

如图正方形ABCD外有一点P,P在BC外侧,并且夹在平行线AB,CD之间,已知PA=根号17,PB=根号2,PC=根号5,求P

求PD是吧.
过P作BC、AD的垂线交BC、AD于G、H.由勾股定理可推得:PB^2-PC^2=GB^2-GC^2=HA^2-HD^2=PA^2-PD^2,PD^2=17-2+5=20,PD=2根号5.