请帮我看一下关于矩阵的题.设四阶矩阵A=(X,-R2,R3,-R4) B=(Y,R2,-R3,R4),其中X,Y,R2,R3,R4均为四维列向量,且一直行列式IAI=4,IBI=1,则行列式IA-BI=?I I是代表矩阵的求行列式.
问题描述:
请帮我看一下关于矩阵的题.
设四阶矩阵A=(X,-R2,R3,-R4) B=(Y,R2,-R3,R4),其中X,Y,R2,R3,R4均为四维列向量,且一直行列式IAI=4,IBI=1,则行列式IA-BI=?
I I是代表矩阵的求行列式.
答
|A-B|
=|(X,-R2,R3,-R4) -(Y,R2,-R3,R4)|
=|=|(X-Y,-2R2,2R3,-2R4)|
=|(X,-2R2,2R3,-2R4)|-|(-Y,-2R2,2R3,-2R4)|
=8×|(X,-R2,R3,-R4)|-8×|(Y,R2,-R3,R4)|
=24