已知f(x)=(x2+ax+a)e-x(a≤2,x∈R).(1)当a=1时,求f(x)的单调区间;(2)是否存在实数a,使f(x)的极大值为3?若存在,求出a的值,若不存在,说明理由.

问题描述:

已知f(x)=(x2+ax+a)e-x(a≤2,x∈R).
(1)当a=1时,求f(x)的单调区间;
(2)是否存在实数a,使f(x)的极大值为3?若存在,求出a的值,若不存在,说明理由.

(1)当a=1时,f(x)=(x2+x+1)e-x;f′(x)=e-x(-x2+x)(2分)当f′(x)>0时,0<x<1.当f′(x)<0时x>1或x<0∴f(x)的单调递增区间为(0,1),单调递减区间为(-∞,0)(1,+∞)(4分)(2)f′(...
答案解析:(1)把a=1代入,对函数求导,分别解不等式f′(x)>0,f′(x)<0,从而可求函数的单调区间
(2)先假设f(x)的极大值为3.仿照(1)研究函数的单调区间,由单调区间求出函数的极大值,结合条件进行判断.
考试点:利用导数研究函数的极值;利用导数研究函数的单调性.
知识点:本题主要考查了导数的基本运用:由函数的导数的符号变化研究函数的单调区间与极值,试题的难度一般不大,属于基础试题
.而存在性问题常是先假设存在,再由假设推导,看是否产生矛盾.