如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.(1)
如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α= ___ 度时,四边形EDBC是等腰梯形,此时AD的长为 ___ ;
②当α= ___ 度时,四边形EDBC是直角梯形,此时AD的长为 ___ ;
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.
(1)①当四边形EDBC是等腰梯形时,
∵∠EDB=∠B=60°,而∠A=30°,
∴α=∠EDB-∠A=30°,
∴△ADO是等腰三角形,
∴AD=OD,
过点O作OF∥BC,
∵BC⊥AC,
∴OF⊥AC,
∴OF是△ABC的中位线,
∴OF=
BC=1,1 2
∵α=∠EDB-∠A=30°,
∴∠ODF=60°=∠DOF=60°,
∴△ODF是等边三角形,
∴OD=OF=DF=1,
∵∠A=∠α=30°,
∴AD=OD=1;
②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°,
根据三角形的内角和定理,得α=90°-∠A=60°,此时,AD=
AC×1 2
=1.5.
3
2
(2)当∠α=90°时,四边形EDBC是菱形.
∵∠α=∠ACB=90°,
∴BC∥ED,
∵CE∥AB,
∴四边形EDBC是平行四边形.
在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,
∴∠A=30°,
∴AB=4,AC=2
,
3
∴AO=
AC=1 2
.
3
在Rt△AOD中,∠A=30°,OD=
AD,1 2
AD=
=
AO2+OD2
,
(
)2+(
3
AD)2
1 2
∴AD=2,
∴BD=2,
∴BD=BC.
又∵四边形EDBC是平行四边形,
∴四边形EDBC是菱形.