求二元函数的极限

问题描述:

求二元函数的极限

第1题:做极坐标变换,令r^2=x^2+y^2 则,x和y趋于0,变成 r—>0

             l im(1-cos(sqrt(x^2+y^2)))/(x^2+y^2)=lim(1-cos(r))/(r^2)

           将cos(r^2)做泰勒展开取前两项:cos(r)=1-r^2/2+.....

            则有:lim(1-cos(r))/(r^2)=

            lim(1-1+r^2/2)/r^2=1/2

第2题:同样做极坐标变换,令x=R cos(a), y=Rsin(a) ,则x和y趋于0时,R趋于0,有:

            lim xy/(sqrt(x^2+y^2)=lim R^2*cos(a)*sin(a)/R=

           =lim R*cos(a)*sin(a)

  1.    =0

 第3题. -1>=sin(u)<=1

     所以 lim xsin(1/(x+y)=lim x*(1)

     = 0