求二元函数的极限
问题描述:
求二元函数的极限
答
第1题:做极坐标变换,令r^2=x^2+y^2 则,x和y趋于0,变成 r—>0
l im(1-cos(sqrt(x^2+y^2)))/(x^2+y^2)=lim(1-cos(r))/(r^2)
将cos(r^2)做泰勒展开取前两项:cos(r)=1-r^2/2+.....
则有:lim(1-cos(r))/(r^2)=
lim(1-1+r^2/2)/r^2=1/2
第2题:同样做极坐标变换,令x=R cos(a), y=Rsin(a) ,则x和y趋于0时,R趋于0,有:
lim xy/(sqrt(x^2+y^2)=lim R^2*cos(a)*sin(a)/R=
=lim R*cos(a)*sin(a)
=0
第3题. -1>=sin(u)<=1
所以 lim xsin(1/(x+y)=lim x*(1)
= 0
答