紧急!求lim(1-cosx)^(2secx),x→π/2的极限

问题描述:

紧急!求lim(1-cosx)^(2secx),x→π/2的极限

lim(1-cosx)^(2secx),x→π/2
=(1-0)^2
=1

原式=lim(x->π/2){[1+(-cosx)]^[(1/(-cosx))(-2)]}
=【lim(x->π/2){[1+(-cosx)]^[1/(-cosx)]}】^(-2)
=e^(-2) (应用重要极限lim(z->0)[(1+z)^(1/z)]=e)
=1/e².