解方程(1)a/(x-a) b=1(b不等于1) (2)m/x-n/(x 1)=0(m不等于n,mn不等于0)

问题描述:

解方程(1)a/(x-a) b=1(b不等于1) (2)m/x-n/(x 1)=0(m不等于n,mn不等于0)

m/x-n/(x+1)=0
m/x=n/(x+1)
[m(x+1)]/[x(x+1)]=(nx)/[x(x+1)]
m(x+1)=nx
mx+m=nx
mx-nx=-m
(m-n)x=-m
x=-m/(m-n)

(1)a/(x-a)+b=1
a/(x-a)=1-b
x-a = a/(1-b)
x = a+a/(1-b) = a{(1+1/(1-b)} = a(2-b)/(1-b)
(2)m/x-n/(x+1)=0
m/x=n/(x+1)
[m(x+1)]/[x(x+1)]=(nx)/[x(x+1)]
m(x+1)=nx
mx+m=nx
mx-nx=m
(m-n)x=m
∵m≠n
∴m-n≠0
∴x=m/(m-n)