已知圆x2+y2+x-6y+m=0与直线x+2y-3=0相交于P、Q两点,O为原点,且OP⊥OQ,求实数m的值.由x+2y-3=0得x=3-2y代入x2+y2+x-6y+m=0化简得:5y2-20y+12+m=0y1+y2=4,y1•y2= (12+m)/5设P、Q的坐标分别为(x1,y1)、(x2,y2),由OP⊥OQ可得:x1•x2+y1•y2=0x1•x2+y1•y2=(3-2y1)•(3-2y2)+y1•y2=9-6(y1+y2)+5y1•y2=9-6×4+5× (12+m)/5=m-3=0解得:m=3由OP⊥OQ可得:x1•x2+y1•y2=0这个为啥 快
问题描述:
已知圆x2+y2+x-6y+m=0与直线x+2y-3=0相交于P、Q两点,O为原点,且OP⊥OQ,求实数m的值.
由x+2y-3=0得x=3-2y代入x2+y2+x-6y+m=0
化简得:5y2-20y+12+m=0y1+y2=4,y1•y2= (12+m)/5
设P、Q的坐标分别为(x1,y1)、(x2,y2),
由OP⊥OQ可得:x1•x2+y1•y2=0
x1•x2+y1•y2=(3-2y1)•(3-2y2)+y1•y2
=9-6(y1+y2)+5y1•y2
=9-6×4+5× (12+m)/5=m-3=0
解得:m=3
由OP⊥OQ可得:x1•x2+y1•y2=0这个为啥 快
答
OP⊥OQ,o为原点,
所以直线OP与OQ的斜率乘积=-1
即(y1/x1)*(y2/x2)=-1
y1*y2=-x1*x2
x1•x2+y1•y2=0