设x≥1,y≥1,证明:x+y+1xy≤1x+1y+xy.

问题描述:

设x≥1,y≥1,证明:x+y+

1
xy
1
x
+
1
y
+xy.

证明:要证x+y+1xy≤1x+1y+xy,只需证明1xy−1x−1y≤xy−x−y,只需证明(1−1x)(1−1y)≤(1−x)(1−y)=(x-1)(y-1),只需证明1-1x≤x-1;1-1y≤y-1,即证x+1x≥2,y+1y≥2,(x≥1,y≥1)这是均值不等式,所以x...
答案解析:直接利用分析法,通过移项变形,转化为基本不等式,即可证明不等式成立.
考试点:综合法与分析法(选修);不等式的证明.
知识点:本题考查分析法证明不等式的方法,注意分析法的证明步骤,考查逻辑推理能力.