设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f^(n-1)(0)=0试用柯西中值定理证明f(x)/x^n=f^(n)(θx)/n!,0〈θ〈1
问题描述:
设函数y=f(x)在x=0的某邻域内具有n阶导数,且f(0)=f'(0)=……=f^(n-1)(0)=0
试用柯西中值定理证明f(x)/x^n=f^(n)(θx)/n!,0〈θ〈1
答