1/2+1/6+1/12+1/20+...+1/90 这道算式如何简便计算?
问题描述:
1/2+1/6+1/12+1/20+...+1/90 这道算式如何简便计算?
答
1/2+1/6+1/12+1/20+...+1/90
观察可知通项为1/x*(x+1)
即:1/x-1/(x+1)
1/2+1/6+1/12+1/20+...+1/90
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10
=1-1/10
=9/10
答
1/2+1/6+1/12+1/20+...+1/90 =1/2+1/2*3+1/3*4+...+1/9*10=1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10=1/2+1/2-1/10=9/10
答
分母是可以分解为 两个连续自然数得乘积
1/2=1-1/2
1/6=1/2-1/3
1/12=1/3-1/4
因此可以得出 1-1/2+1/2-1/3+1/3-1/4+。。。。。。+1/9-1/10
=1-1/10=9/10
答
1/2+1/6+1/12+1/20+...+1/90
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10
=1-1/10
=9/10
答
1/2+1/6+1/12+1/20+...+1/90
=1/2+(1/2-1/3)+(1/3-1/4)...+(1/9-1/10)
=1/2+1/2-1/10
=9/10