某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两种花木每株成本分别为多少元?(2)据市场调研,1株甲种花木售价为760元,1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21 600元,花农有哪几种具体的培育方案?

问题描述:

某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.
(1)求甲、乙两种花木每株成本分别为多少元?
(2)据市场调研,1株甲种花木售价为760元,1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21 600元,花农有哪几种具体的培育方案?

(1)设甲、乙两种花木的成本价分别为x元和y元.
由题意得:

2x+3y=1700
3x+y=1500

解得:
x=400
y=300

答:甲、乙两种花木每株成本分别为400元、300元;
(2)设种植甲种花木为a株,则种植乙种花木为(3a+10)株.
则有:
400a+300(3a+10)≤30000
(760−400)a+(540−300)(3a+10)≥21600

解得:
160
9
≤a≤
270
13

由于a为整数,
∴a可取18或19或20.
所以有三种具体方案:
①种植甲种花木18株,种植乙种花木3a+10=64株;
②种植甲种花木19株,种植乙种花木3a+10=67株;
③种植甲种花木20株,种植乙种花木3a+10=70株.
答案解析:(1)设甲、乙两种花木的成本价分别为x元和y元.
此问中的等量关系:①甲种花木2株,乙种花木3株,共需成本1700元;②培育甲种花木3株,乙种花木1株,共需成本1500元.
(2)结合(1)中求得的结果,根据题目中的不等关系:①成本不超过30000元;②总利润不少于21 600元.列不等式组进行分析.
考试点:一元一次不等式组的应用;二元一次方程组的应用.

知识点:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.
注意:利润=售价-进价.