已知多面体ABCDFE中,四边形ABCD为矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD,O、M分别为AB、FC的中点,且AB=2,AD=EF=1.(Ⅰ)求证:AF⊥平面FBC;(Ⅱ)求证:OM∥平面DAF.
问题描述:
已知多面体ABCDFE中,四边形ABCD为矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD,O、M分别为AB、FC的中点,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面FBC;
(Ⅱ)求证:OM∥平面DAF.
答
(Ⅰ)∵平面ABEF⊥平面ABCD,平面ABEF∩平面ABCD=AB
BC⊂平面ABCD,而四边形ABCD为矩形∴BC⊥AB,
∴BC⊥平面ABEF∵AF⊂平面ABEF∴BC⊥AF
∵BF⊥AF,BC∩BF=B∴AF⊥平面FBC;
(Ⅱ)取FD中点N,连接MN、AN,则MN∥CD,且MN=
CD,1 2
又四边形ABCD为矩形,∴MN∥OA,且MN=OA
∴四边形AOMN为平行四边形,∴OM∥AN
又∵OM⊄平面DAF,AN⊂平面DAF∴OM∥平面DAF.
答案解析:(Ⅰ)欲证AF⊥平面FBC,根据直线与平面垂直的判定定理可知只需证AF与平面FBC内两相交直线垂直,而BC⊥AF,BF⊥AF,BC∩BF=B,满足定理条件;
(Ⅱ)欲证OM∥平面DAF,根据直线与平面平行的判定定理可知只需证OM与平面DAF内一直线平行即可,取FD中点N,连接MN、AN,易得OM∥ON,找出了定理的条件.
考试点:直线与平面垂直的判定;直线与平面平行的判定.
知识点:本题主要考查了直线与平面垂直的判定,以及直线与平面平行的判定,考查空间想象能力、运算求解能力、推理论证能力,考查数形结合思想.