算式计算:1/2+1/2*3+1/3*4+.1/2008*2009 注:*是乘号 /是分号

问题描述:

算式计算:1/2+1/2*3+1/3*4+.1/2008*2009 注:*是乘号 /是分号

原式等于1/2+1/2-1/3+1/3-1/4+........1/2008-1/2009=1-1/2009=2008/2009

答案2008/2009
步骤 1/2=1-1/2 1/2*3=1/2-1/3 1/3*4=1/3-1/4 ....以此类推
所以原式=1-1/2+1/2-1/3+1/3-.....-1/2008+1/2008-1/2009=2008/2009
所以=2008/2009

(1-1/2) (1/2-1/3) (1/3-1/4) … (1/2008-1/2009)
=1 (1/2-1/2) (1/-1/3) … (1/2008-1/2008)-1/2009
=2008/2009

1/n(n+1)=1/n-(1/n+1)这个是通式,记住经常用的,最后变成了
1/2+1/2-1/2009=2008/2009

=1/2+1/2-1/3+1/3-1/4+.+1/2008-1/2009(1/2*3可拆成1/2-1/3)
=1/2+1/2-1/2009
=2008/2009