1/1*2+1/3*4+1/4*5+...+1/2004*2005+1/2005*2006,
问题描述:
1/1*2+1/3*4+1/4*5+...+1/2004*2005+1/2005*2006,
答
解
原式
=(1-1/2)+(1/2-1/3)+……+(1/2005-1/2006)
=1+(1/2-1/2)+(1/3-1/3)+……+(1/2005-1/2005)-1/2006
=1-1/2006
=2005/2006
裂项
1/n(n+1)=1/n-1/(n+1)