向量OB=(1,0),向量OA=(√3+cosθ,1+sinθ),则向量OA与向量OB的夹角的范围是A.[0,π/3] B.[π/3,π/2] C.[5π/12,π/2] D.[π/12,5π/12] ---------------
问题描述:
向量OB=(1,0),向量OA=(√3+cosθ,1+sinθ),则向量OA与向量OB的夹角的范围是
A.[0,π/3]
B.[π/3,π/2]
C.[5π/12,π/2]
D.[π/12,5π/12]
---------------
答
0B就相当于X轴正半轴.所以这个夹角就是OB与X轴正半轴夹角a,
tan(a)=(1+sinθ)/根号3+cosθ,
sinθ,cosθ都是[-1,1],代特殊值都试出来的:选A