Z=(1-i)/√2 ,则Z^100+Z^50+1的值是?
问题描述:
Z=(1-i)/√2 ,则Z^100+Z^50+1的值是?
答
z²=(1-i)²/2=-i
z^4=-1
Z^100+Z^50+1
=(z^4)^25+(z^4)^12×z²+1
=(-1)^25+(-1)^12×(-i)+1
=-1-i+1
=-i
答
z²=(1-i)²/(√2)²=(1-2i-1)/2=-i
z⁴=(z²)²=(-i)²=-1
z^100+z^50+1
=(z⁴)^25 +[(z⁴)^12]×z²+1
=(-1)^25+[(-1)^12]x(-i) +1
=-1-i+1
=-i
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。
祝学习进步!
答
z=cos(-π/4)+isin(-π/4)所以原式=[cos(-100*π/4)+isin(-100*π/4)]+[cos(-50*π/4)+isin(-50*π/4)]+1=cos(-25π)+isin(-25π)+cos(-25/2π)+isin(-25/2π)+1=cosπ+isinπ+cos(-π/2)+isin(-π/2)+1=-1-i+1=-i...