已知x,y∈R,满足2≤y≤4-x,x≥1,则x2+y2+2x−2y+2xy−x+y−1的最大值为______.

问题描述:

已知x,y∈R,满足2≤y≤4-x,x≥1,则

x2+y2+2x−2y+2
xy−x+y−1
的最大值为______.

由x,y满足2≤y≤4-x,x≥1,画出可行域如图所示.则A(2,2),B(1,3).x2+y2+2x−2y+2xy−x+y−1=(x+1)2+(y−1)2(x+1)(y−1)=x+1y−1+y−1x+1,令k=y−1x+1,则k表示可行域内的任意点Q(x,y)与点P(-1,1)的...
答案解析:把原式化简可得

x+1
y−1
+
y−1
x+1
,利用可行域和斜率计算公式可得
y−1
x+1
的取值范围,再利用导数即可得出最大值.
考试点:基本不等式.
知识点:本题综合考查了线性规划的可行域和斜率计算公式、利用导数求函数最大值等基础知识与基本技能方法,考查了分析问题和解决问题的能力,属于难题.