若|x-1|+|y+3|=0,则1-xy-xy2 =?请详细些,急!

问题描述:

若|x-1|+|y+3|=0,则1-xy-xy2 =?
请详细些,急!

|x-1|+|y+3|=0,
有|x-1|≥0
|y+3|≥0
所以 必须有 |x-1|=0 |y+3|=0 才可以满足
所以 x=1 y=-3
代入 1-xy-xy²=1+3-9=-5
|x-1|+|y+3|=0,
x-1=0,y+3=0
x=1,y=-3
1-xy-xy^2
=1-(-3)-(-3)^2
=1+3-9
=-5

|x-1|+|y+3|=0,
x-1=0,y+3=0
x=1,y=-3
1-xy-xy^2
=1-(-3)-(-3)^2
=1+3-9
=-5

|x-1|+|y+3|=0,
有|x-1|≥0
|y+3|≥0
所以 必须有 |x-1|=0 |y+3|=0 才可以满足
所以 x=1 y=-3
代入 1-xy-xy²=1+3-9=-5