已知a=(sin x,1),b=(cos x,-1/2).求(1)当a//b时,求tan x的值.(2)当a⊥b时,求|a+b|的值.(3)求函数f(x)=a·(a-b)的值域.
问题描述:
已知a=(sin x,1),b=(cos x,-1/2).
求(1)当a//b时,求tan x的值.
(2)当a⊥b时,求|a+b|的值.
(3)求函数f(x)=a·(a-b)的值域.
答
1)、a//b,则a.b=±|a||b|
所以 (sinxcosx-1/2)^2=(sinxsinx+1)(cosxcosx+1/4)
0=1/4sinxsinx+sinxcosx+cosxcox
(1/2sinx+cosx)^2=0
所以,1/2sinx=-cosx,=> tanx=-2
2)、a⊥b,则a.b=0
所以sinxcosx-1/2=0,sinxcosx=1/2
|a+b|=√[(sinx+cox)^2+1/4]=√(1+2sinxcosx+1/4)
=√(1+2*1/2+1/4)=3/2
3)、a-b=(sinx-cosx,3/2)
所以f(x)=a.(a-b)=sinx*(sinx-cosx)+3/2
=1/2(1-cos2x)-1/2sin2x+3/2
=-1/2(cos2x+sin2x)+2
=-√2/2sin(x+π/4)+2
所以值域为〔2-√2/2,2+√2/2〕