已知tan(α+β)=2,tan(α-β)=1,则sin4α=
问题描述:
已知tan(α+β)=2,tan(α-β)=1,则sin4α=
答
答:
tan(a+b)=2,tan(a-b)=1
tan2a=tan(a+b+a-b)
=[tan(a+b)+tan(a-b)]/[1-tan(a+b)tan(a-b)]
=(2+1)/(1-2*1)
=2/(-1)
=-3
所以:tan2a=sin2a/cos2a=-3
所以:sin2a=-3cos2a
代入sin²2a+cos²2a=1得:
9cos²2a+cos²2a=1
cos²2a=1/10
所以:
sin4a=2sin2acos2a
=2*(-3cos2a)cos2a
=-6cos²2a
=-6*(1/10)
=-3/5
所以:sin4a=-3/5
答
tan2a=tan(α+β)+tan(α-β)/1-tan(α+β)tan(α-β)=-3
sin2a/cos2a=-3
sin2acos2a/cos²2a=-3
sin4a/cos²2a=-6
sin4a=6cos²2a=6/1+tan²2a=3/5
答
tan2a=tan[(a+β)+(a-β)]=[tan(a+β)+tan(a-β)]/[1-tan(a+β)tan(a-β)]=(2+1)/(1-2)=-3∴sin4a=2sin2a*cos2a=2sin2a*cos2a/(sin²2a+cos²2a) (sin²2a+cos²2a=1) ...