求定积分:∫上根号2下2 分子是1,分母是x根号下x²-1
问题描述:
求定积分:∫上根号2下2 分子是1,分母是x根号下x²-1
答
1/[x根号(x²-1)] 设x=sect x=(根号2)时,t=π/4 x=2时,t=π/6原式化为::dx=dsect=tant*sectdt∫(π/6,π/4)tantsectdt/(sect*tant)=∫(π/6,π/4)dt= (π/6,π/4)|t |=π/4-π/6=π/12