求sinx=(1\3),2π<x<3π,那么sin(x\2) + cos(x\2)
问题描述:
求sinx=(1\3),2π<x<3π,那么sin(x\2) + cos(x\2)
答
因为[sin(x\2) + cos(x\2)]²=1+sinx=1+1/3=4/3
又因为,2π<x<3π
所以,π<x/2<3π/2 即,x/2是第三象限的角,
所以,sin(x/2) 所以,sin(x/2)+cos(x/2)=-2√3/3
答
∵2π<x<3π
∴ π<x/2<3π/3
∴ sin(x\2) + cos(x\2)∴[sin(x\2) + cos(x\2) ]²=1+sinx=4/3
∴sin(x\2) + cos(x\2) =-2√3/3
答
2π<x<3π π<x/2<3π/3 sin(x\2) + cos(x\2)